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Abstract. The shape and orientation of twin walls are calculated within the limits of elasticity
theory. Single twin walls are oriented along lattice planes which are determined by the condition
that the variation in the spontaneous strain through the twin walls does not generate secondary
strain fields. The twin walls have a finite thickness which is described by the Landau–Ginzburg
theory. Two twin walls can bend towards each other and form a wedge-shaped junction. The
trajectories of the twin walls in the plane perpendicular to the junction are needle shaped so
that domains enclosed by the twin walls are commonly called ‘needle domains’. It is shown
that the actual shape of the trajectory varies widely between straight lines (i.e. planar walls near
the junction) to parabolic or exponential (i.e. curved twin walls near the junction which make
the needle tip appear blunt). The essential physical parameters which determine the shape of
the trajectory are, firstly, the energies to bend a wall segment, secondly, the energy required
to rotate a planar wall segment in an elastically anisotropic medium and, thirdly, the Peierls
energy which is required to move a walls segment laterally. Various characteristic trajectories
are discussed including those of junctions between orthogonal walls.

1. Introduction

Ferroelastic domain structures are one of the most common non-equilibrium features
in materials and minerals and, indeed, virtually all ferroelastic or co-elastic materials
show the formation of characteristic microstructures when they undergo a structural phase
transition [1]. Single-domain crystals can be produced under specific conditions but, for
example, it requires great experimental skill to eliminate twin walls under the application
of uniaxial stress in rather pure materials [2–4].

It is a common observation that ferroelastic framework structures undergo (nearly)
continuous phase transitions [1]. The microstructures in such materials have nothing to
do with nucleation-and-growth mechanisms during the phase transition but may originate
from lattice imperfections, the effects of the surface and frozen-in fluctuations. The
general thermodynamic description of ‘twinning’ and ‘tweeding’ as the most common
microstructures is rather well understood [5–22]. What are much less understood are the
finer details of the twin structures on a mesoscopic scale. This fine structure involves the
formation of needle domains and wall junctions, and the evolution of wall profiles when
they approach the surface of the crystal, etc [1].

The reasons for our ignorance in this field are twofold. Firstly, the mesoscopic length
scale between 50 and 200Å is experimentally difficult to access. The observation by electron
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microscopy requires the simultaneous analysis of a strain pattern related to twin walls and
the high-resolution imaging of the internal structure of such walls. Such simultaneous
observations are clearly a difficult task for the experimentalist. The situation has somewhat
improved with the advent of high-resolution x-ray diffraction facilities which allow the
direct and convenient observation of the diffuse diffraction around Bragg reflections [23].
The diffuse diffraction profiles can in many cases be directly correlated with the mesoscopic
domain structures, e.g. the thickness of a twin wall was determined in this way. In fact,
this technique is sensitive enough to ‘see’ very few walls indeed; wall patterns with one
wall every 10 000Å have been measured [24–27].

The second reason for the lack of knowledge in this field is the somewhat esoteric
nature of the subject. Although mathematically appealing, it seemingly lacks the potential
for application of a technical nature. This assessment is not correct, however. With the
advent of high-temperature superconductors it became immediately clear that their current
characteristics are related to the mesoscopic structure. In the field of semiconducting thin
films and devices, the tendency to miniaturize to a true nanostructure will presumably
lead to the use of ferroelastic materials as convenient templates with the appropriate
microstructure. Nonlinear optics makes use of twin patterns as waveguides and dielectric
relaxor materials are based on the fact that certain ferroelectric materials always show
intrinsic microstructures. Finally, in the general area of geosciences, the analysis of
mesoscopic structures has for several years been used for the determination of past geological
events [28–35].

What is lacking at this stage of the development is a detailed study which allows the
quantitative description of the wall profiles and understanding of the underlying physical
features which determine wall profiles. In this paper we focus on the bending of domain
walls which leads to the formation of needle domains, the pinning by isolated point defects
and the bending of walls near 90◦ junctions. We also derive some simple dynamical features
of twin walls.

The paper is organized as follows. First the energy expressions for wall rotations and
wall bending are reviewed. In section 3 the wall trajectories are derived for some specific
physical situations. In section 4 the dynamical and kinetic properties of wall movements are
anticipated; experimental observations will be compared with the results of this theoretical
treatment in a forthcoming paper.

2. The elastic strain interaction

The internal structure of twin walls is largely determined by the short-range interaction
between atoms and the way that the atomic coordinates and occupancies reflect the spatial
variations in the thermodynamic order parameter of the ferroelastic or co-elastic phase
transition. In such materials, the structural variations lead to elastic relaxations of the crystal
structure, producing long-range strain fields. The strain fields generated by mesoscopic
structures need not lead to a macroscopic deformation of the sample or a variation in the
average lattice parameters. The latter would be expressed by the macroscopic spontaneous
strain of the sample and it is usually observed that different mesoscopic structures (e.g.
single crystals or heavily twinned materials) show almost the same macroscopic lattice
parameters and, thus, the same spontaneous strain. Local strain fields reflect simply the
pulling and pushing of atoms due to the formation of mesoscopic structures whereby the
restoring forces obey Hooke’s law with appropriate elastic constants. Such strain fields
exist not only in displacive phase transitions but also in those of the order–disorder type.
When atomic ordering takes place in one part of the crystal it inevitably pulls and pushes
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neighbouring atomes and/or structural units, i.e. it creates a local displacement field. This
field then displaces atoms beyond it and hence propagates elastically to distant parts of the
crystal via a knock-on effect. The experimental observation of domain boundaries, such as
twin walls, shows that their strain profiles corresponds well to that predicted from classic
theory of elastic interactions, ignoring any additional short-range interactions.

Let us first consider twinning due to a phase transition with one non-degenerate order
parameterQ and the spontaneous strainei . Starting from the Landau–Ginzburg potential
of such a phase transition, one finds for bilinear coupling betweenQ andei

G = 1
2A(T − Tc)Q

2 + 1
4BQ4 + λieiQ + 1

2Cikeiek + 1
2g(∇Q)2 (1)

where summation takes place over all repeated indices. If the system can relax elastically,
the equilibrium condition becomes

δG/δei = 0 (2a)

or

λiQ + Cikek + Ciiei = 0 i 6= k. (2b)

This equation shows that all strain components are proportional to the order parameterQ as
required in proper ferroelastic phase transitions. We can then rewrite the Gibbs free energy
as a function of the strain only and focus on the symmetry-breaking strain which generates
the mesoscopic structure. We call this straine; its macroscopic equivalent isespontaneous .
The Gibbs free energy is

G = 1
2C(T )e2 + 1

4C ′e4 + 1
2g(∇e)2. (3)

The profile of a twin wall follows from the condition that the total strain energy of the wall
is minimal: ∫

G(e, ∇e) dy = minimum (4)

wherey is the coordinate along the normal to the part of the twin wall under consideration.
The solution of the minimum condition is given by the Euler–Lagrange equation ofG:

(∂/∂y)[∂G/∂(∇e)] = ∂G/∂e. (5)

When replacingG by its full expression, one finds that

g d2e/dy2 = Ce + C ′e3. (6)

The solution of this differential equation was reviewed in great detail in [1]. The strain
profile of a twin wall is

e = e0 tanh(y/w) (7)

where e0 = (C/C ′)1/2 is the spontaneous strain in the uniform part of the sample and
w = 1

2(g/C)1/2 is a measure of the thickness of the twin wall.
Experimentally, such twin wall profiles were observed in feldspars, high-temperature

superconductors and ferroelastic lead phosphate [24, 25, 36–41]. Twin walls in this
approximation are planar as long as there is no interaction with other twin walls, impurities
or the crystal surface. A most common interaction originates from a configuration of four
domain walls where two pairs form corners as depicted in figure 1. The corner junctions
attract each other with a force

F = Ar ln(R/r)
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Figure 1. Formation of needle twins. (a) Two right-angled domain walls separating two
domains are too far apart to interact. (b) Another pair of domains are sufficiently close for
mutual attraction to occur. (c) With a sufficiently fast cooling rate, this activated state can be
overcome. (d) The resulting needle twin migrates farther into the surrounding domain under the
influence of the strain field between its tip and the new planar boundary.

where r is the distance between the two junctions andR is the unbinding distance. For
sufficiently short starting distances between the junctions, the junctions will move towards
each other and join. Once the two junctions have joined to form a single junction, a needle
domain is formed. The new junction is the tip of the needle (figure 1). The needle can
then retract, which is a very common annealing mechanism for twin structures (see [1] for
detailed discussions and examples).

We now focus on the discussion of the shape of the needle domain as shown in figure 2.
At regions far away from the needle tip, the planar wall is maintained by local pinning forces.
These pinning forces disallow the lateral movement of the wall along they direction. At
the tip, the bending forceF pulls the wall. The same situation is encountered if the forceF

relates to point defects or surface effects; the following treatment applies for all these cases.
What matters is that a force is exerted at a well defined position of the wall and that the
part of the wall far away from this position maintains its original shape. The actual shape
of the wall is considered to be uniform along thez direction; the bending takes place in the
x–y plane. The wall profile is given as its trajectory in thex–y plane. We now discuss the
relevant forces and energies which are opposed to the bending of the wall. Local theories
are used throughout this paper because non-local corrections are expected to be small for
geometric configurations as encountered in needle domains, etc. Possible dislocations, etc,
at the junction are not considered here because they have little effect on the overall shape
of the wall trajectories.

2.1. The elastic anisotropy energy

The strain field changes its sign in the middle of the twin wall. One twin domain has
a positive spontaneous strain; the other has a negative spontaneous strain. Any such
strain is described uniquely by an atomic displacement fieldu(r) which has in a three-
dimensional crystal three components. The strain tensor has six components so that it
is clear that some correlation must exist between the various strain components for an
arbitrary displacement field. These correlations are ensured by the compatibility condition
which requires that inhomogeneous strains do not destroy the continuity of the crystal
structure. In other words, we disallow the formation of cracks when the domain walls
bend. Mathematically, continuity is elegantly described by the condition that the second
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Figure 2. Characteristic microstructure of orthorhombic YBa2Cu3O7 showing needle domains
at various stages of their development. In the centre, two domains are still attached to an
orthogonal wall. The needle tip is almost formed. Arrays of needle domains (so-called domain
combs) are seen at the top and bottom right-hand side. Stranded needles without an orthogonal
wall are seen at the left-hand side of the image. (Length scale of black stripe, 0.1 µm.)

derivatives of the displacement field are independent of the order in which the derivatives
are taken [16]:

δ2ui/(δxj δxk) = δ2ui/(δxkδxj ) (8)

i.e. no singularity of the displacement field exist at any point in space. In a two-
dimensionalx ′–y ′ plane, the compatibility relation can easily be rewritten in terms of the
strain components only:

(δ2/δx ′2)ey ′y ′ + (δ2/δy ′2)ex ′x ′ = 2(δ2/δx ′ dy ′)ex ′y ′ . (9)

In terms of the symmetry-adapted strains

ehom = ex ′x ′ + ey ′y ′ (10)

ex2−y2 = ex ′x ′ − ey ′y ′ (11)

exy = ex ′y ′ (12)

these conditions can be further simplified. The homogeneous strainehom stretches the plane
as a whole, whereas the two shear strains act along the〈10〉 and〈11〉 directions respectively.
Converting the strain into reciprocal space by Fourier transformation we find the simplest
form of the compatibility relation:

ehom(k) = ex2−y2(k) cos(2α) + exy(k) sin(2α) (13)

whereα is the angle measured from the positivekx axis. This equation leads to the following
important conclusion [16]. Let the spontaneous strain of the phase transition beex2−y2. This
strain can then exist on its own for any wavevectork for an angleα = 45◦ + n90◦. This
means that a wall profile of thex2 − y2 type can be formed for the crystallographic〈110〉
directions but not along any other direction. This preferred orientation of the twin wall
is often called the ‘elastically soft direction’ because the formation of twin walls in this
direction requires the minimum excess energy. If a wall is locally bending away from the
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soft direction it will automatically generate strain fields with symmetries which are different
from that of the spontaneous strain. If we constrain the size of the crystal (ehom = 0), we
find that a bending of a wall withex2−y2 symmetry will generate strain of theexy symmetry:

exy = −ex2−y2 cos(2α). (14)

As the strain energy increases with increasing square of the strain component, we find that
bending leads to an increase in the wall energy (for small bending angles) proportional to
the square of the bending angle. For smallk vectors (i.e. long-wavelength modulations) the
excess energy due to the compatibility condition is the elastic anisotropy energy:

Eanisotropy(δα) = 1
2V [C2 + C1 sin2(2δα) e2

x2−y2 + [C3 + C1 cos2(2δα)] e2
xy(k)

−C1 sin(4δα) ex2−y2(k) e∗
xy(k) (15)

whereCi indicates combinations of the relevant elastic constants. The angular dependence
of the anisotropy energy for a wall segment can be expressed as

Eanisotropy(δα) = 1
2U sin2(2δα) (16)

whereU is a combination of elastic constants and the relevant Fourier components of the
strain field in the wall. This angle-dependent wall energy is universal for all elastic systems
and does not depend on any underlying atomistic model. The only material parameter in the
problem isU which describes the stiffness of the system with respect to any misorientation
of a straight domain wall. For small anglesα and small curvatures, the angle can be equated
with the local slope of the wall in thex–y plane:

δα = −dy/dx. (17)

For small angles the anisotropy energy is simply a quadratic function of the slope of the
wall in the x–y plane.

Eanisotropy = U(dy/dx)2. (18)

Equations (16) and (18) will be used in the following for the calculation of wall trajectories.

2.2. The bending energy

While Eanisotropy describes the excess energy of a straight part of a wall for orientations
which are not along the elastically soft directions, the wall bending energy describes the
excess energy needed to introduce curvature in the wall trajectory. Experimental evidence
from x-ray diffraction studies and some observations using transmission electron microscopy
show that the characteristic wall thicknessw is of the order of a few lattice repetition lengths.
In the case of framework structures with large crystallographic unit cells, the wall thickness
is some 20Å. If such a wall is curved, the atomic distances in the wall are stretched on
one side of the wall and compressed on the other side of the wall. The neutral layer is in
the middle where there is no extension or compression. The cross section along they axis
increases in the bend region by

δybend = [(R + x)/R]δyunbend = (1 + x/R)δyunbend (19)

whereR is the bending radius. Each elementδy is hence extended with the component of
the strain tensor given by

uxx = x/R. (20)

The elastic response due to the strain is described by the stress tensor with

σyy = Ex/R (21)
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whereE is the stiffness parameter equivalent to Young’s modulus in elastic theory [42].
The bending energy is proportional touxxσyy , i.e. it depends onR as 1/R2 which, in turn,
is proportional to the bending angleδ8:

Ebending =
∫

1
2IE(δ8)2 dl (22)

whereI is the momentum of inertia and dl is the length element along the wall trajectory
in the x–y plane. We now define the angular momentum of the bend as

M = IE δφ (23)

in analogy to the mechanical bending of macroscopic elastic bodies. The bending energy
becomes then

Ebending =
∫

M2

2IE
dl. (24)

In order to characterize the bending we put a tangential reference plane at any point of
the wall. Its intersection with thex–y plane defines the tangential vectort. The bending
angle for a length element dl is

δφ = t × dt

dl
. (25)

For small angles the vectort is along the direction of the unbent wall in the pinned area
with t = x. The orientation oft in the bent region is given by the slope of the trajectory
t = dy/dl with

dt/dl = d2y/dl2 = d2y/dx2. (26)

The energy of the wall bending can then be written as

Ebending = 1
2IE

∫ (
d2y

dx2

)2

dx. (27)

The bending energy per length element of the wall

Ebending = 1
2IE(d2y/dx2)2 = S(d2y/dx2)2 (28)

is quadratic in the second derivatives of the spatial coordinates. This is in contrast with
Eanisotropy which depends on the square of the first derivatives of the wall trajectories.
Both energies are positive, i.e. they increase with increasing deviation from the ideal wall
orientation. Before we can discuss the actual wall profiles, we first derive the equilibrium
condition for a bent wall. Let a force act on one point of the wall trajectory, say at the
tip of the needle. This force is then compensated by all forces inside the cross section
of the wall. If the external force is applied at points, then the compensation forces are
uniform everywhere between these points. We denote the equivalent stress in the walls as
−σinternalf wheref is the unit vector alongF . The angular momentum for each length
elementdl is

dM = −dl × (−σinternalf) (29)

or, with the tangential vectort = dl/dl as unit vector,

dM/dl = (−σinternalf) × t. (30)

For uniform external forces, the stress field is a linear function of the length of the wall.
In order to find the angular momentum for constant values of dσinternal/dl = K we
differentiate the last equation and find

d2M/dl2 = t × (dσinternal/dlf) = t × K. (31)
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We finally express the angular momentum in terms of the spatial derivatives and find the
characteristic bi-quadratic equation of elasticity theory of walls:

IE d4y/dx4 = Ky (32)

whereKy is they component of the vectorK. This equation determines the curvature of
a twin wall or any other object (e.g. an antiphase boundary) in the case of uniform applied
forces.

3. Wall trajectories for specific physical situations

3.1. Curvature-dominated trajectories

3.1.1. Strained domain walls with one pinning centre.A rather common physical situation
for wall bending in materials with pinning centres is shown in figure 3. A macroscopic
sample is sheared so that domain 1 is stabilized with respect to domain 2. The wall moves
in order to increase the size of domain 1 under a constant force per unit wall surface
element applied to the wall (i.e.K = constant). When the wall hits a defect, a point force
is superimposed on the uniform force field and the wall bends around the defect. For thick
walls in rather isotropic media, the wall profile is determined by the bending energy with
d4y/dx4 = 0 everywhere except at the locus of the point force (e.g.x = h/2):

d4y/dx4 = Kδ(x − h/2). (33)

The surface of the crystal is allowed to relax so that the boundary conditions arey = 0 at
x = 0 andx = h. The solution of the differential equation is a polynomial of third order
which is symmetrical with respect tox = h/2. No second-order terms exist because of the
condition that the wall is flat (y ′′ = 0) without applied force. The required solution is

y = (1/h3)ymaxx(3h2 − 4x2) for x < h/2 (34)

y = (1/h3)ymax(h − x)(−h2 + 8xh − 4x2) for x > h/2 (35)

where ymax = Kh3/48 is the maximum deviation of the wall centre from the surface.
Around the defect the wall is parabolically bent with a straighter shape farther away from
the pinning centre. As there is no elastic anisotropy energy present in this example, the wall
is never planar along the elastically soft direction but is bent throughout the entire crystal.

3.1.2. Two pinning centres at the surface of the crystal.In this case, the point forces are
at each end of the wall whereas the rest of the wall is subject to a constant dragging force
due to the macroscopic shear of the sample. The differential equation which describes the
wall trajectory is now

d4y/dx4 = K[δ(x) + δ(x − h)] (36)

with solution

y = (K/24)x(x3 − 2hx2 + h3) (37)

whereh is again the thickness of the sample in thex direction. The total wall profile
is almost identical with that in section 3.1.1. The fundamental difference is how the wall
reacts to the pinning centre. In the case of the pinning centre in the middle of the crystal,
we find that the wall bends around the centre with a parabolic curvature. In the case of
surface pinning, the wall simply rotates near the centres but does not curve. The maximum
curvature is again in the middle of the crystal because the two rotated parts of the wall
have to connect in a smooth manner. The important conclusion from the comparison of the



Mesoscopic structures in ferroelastic crystals 8485

Figure 3. Uniform drag on the wall with one pinning centre; the wall profile is bending
dominated.

Figure 4. Comparison of two wall profiles with a pinning centre (curve a) and surface pinning
(curve b).

shapes in figure 4 is that it is impossible to distinguish between the possible origins of a
bent contour from the experimental observation alone; the contour may be due to one defect
in the middle of the bend or several defects at the outside.

3.1.3. Elastic drag with one pinning centre.The wall is again moved by external forces
and hits a local defect. In contrast with the case discussed in section 3.1.1 the wall is
allowed to relax along they direction at great distance from the pinning centre. Such
relaxation is achieved by a macroscopic deformation of the sample. The restoring force of
the relaxation is elastic in nature and increases linearly with the wall displacementK = Py.
The trajectory is described by

S d4y/dx4 = −PyK ′δ(x). (38)

For an infinite crystal, the boundary conditions arey = 0 at x = ∞ and x = −∞, the
bending must be continuous aty = 0 in y, y ′ and y ′′. The solution of the differential
equation is

y = ymax exp(−β|x|)[cos(β|x|) + sin(β|x|)] (39)

with the characteristic length

λ = 1/β = (4S/P )1/4. (40)
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The new aspect of this solution, in contrast with the case discussed before, is that there
is an intrinsic length scale of the problem which allows the wall to bend back to the original
orientation of the unperturbed crystal. This solution will always apply if there are atomic
Peierls forces which determine the orientation of the wall so that a free rotation of the wall
becomes energetically too costly. As a consequence the original contour of the wall at large
distances from the pinning centre is restored. This physical situation is expected in most
materials besides very pure samples with no Peierls forces which were discussed before.
The trajectory of the wall with Peierls forces is shown in figure 5; the bending of the wall is
strongest around the pinning centre and decays exponentially with increasing distance from
the centre.

Figure 5. Wall bending near a pinning centre with dominant bending energy and elastic lattice
relaxation.

3.1.4. Needle domain without relaxation.We now consider a needle domain which is
rigidly pinned outside the region of the tip of the needle and its curvature is determined by
the bending forces alone. The position of the tip is atx = 0. At this point the force which
generated the tip is applied. No further forces are considered:

d4y/dx4 = Kδ(x) (41)

with the solution

y = (ymax/2λ3)(λ − x)2(2λ + x) for x < λ (42)

whereymax is the maximum deviation of the wall trajectory from the original wall andλ

is the length of the needle tip, i.e. the length of the area which is unpinned. The length
scale is now determined by the unpinning behaviour. It is not an intrinsic length scale of
the problem although one might expect that this length is correlated with the value ofymax .
The shape of the wall trajectory is shown in figure 6. Note that the wall is rather smoothly
bent with no singularity at the point of unpinning atx = λ.

3.2. Anisotropic wall energies

3.2.1. Needle domains for weak bending.We first consider Peierls forces which are a linear
function of the wall displacementy and simplify the anisotropy energy for small angles to
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Figure 6. Wall profile for needle domain with a large curvature energy and no lattice relaxation.

Figure 7. Profile of an anisotropy-dominated needle with lattice relaxation.

include only the quadratic term in the energy density

E = U(dy/dx)2 + Py2. (43)

The wall trajectory is then determined by the Euler–Lagrange equation with

−2Py + 2U d2y/dx2 = 0. (44)

The solution is an exponential decay with

y = ymax exp(−x/λ) (45)

whereymax is again the maximum deviation from the unperturbed wall at the needle tip.
The length scaleλ is given by

λ = (U/P )1/2 (46)

and is an intrinsic property of this wall contour. It is determined by the ratio of the anisotropy
energy to the Peierls energy. For large pinning forces the needle tip is short, whereas for
small pinning forces the tip becomes long and narrow. The profile is smooth and shows a
maximum bend near the shaft of the tip (figure 7). At the tip itself the trajectory is linear.

3.2.2. Unpinning of the needle tip.We now discuss a case similar to that described in
section 3.1.4. The pinning is strong inside the original wall whereas the bent part of the
wall is totally unpinned. A typical physical situation can be described as follows. Let the
pinning be generated by impurity atoms. Such impurities often cluster on the walls. This
effect is called ‘decoration’ of a twin wall. If a decorated wall moves, the impurity atom
cannot follow quickly enough and the pinning effect is lost. Abrupt depinning in strong
electric fields is commonly observed in ferroelectric crystals. If only part of the wall moves
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owing to the formation of a needle domain, this part is unpinned while the remainder of
the wall remains pinned. Corrections of the kind discussed in section 3.2.1 are needed to
describe the region where the unpinning starts near the shaft of the needle tip. For the actual
tip, the trajectory is described byP = 0 with the boundary conditiony = 0 atx > λ. With

2U d2y/dx2 = 0 (47)

the solution becomes

y = ymax(1 − x/λ) for x < λ. (48)

The trajectory is linear over large areas of the needle with exponential corrections near the
shaft of the needle tip. The wall profile is shown in figure 8.

Figure 8. Linear needle tip for strong anisotropy energies and no lattice relaxation.

3.2.3. Nonlinear Peierls forces.The wall is again strongly pinned in its unperturbed region.
Instead of letting the pinning force disappear completely close to the needle tip we consider
now the case when the Peierls force decays slowly with the bending of the wall. The Peierls
potential is now not parabolic but is flatter than the parabolic potential for larger values
of y. An appropriate energy density is

E = U(dy/dx)2 + P [1 − cos(y/y0)]. (49)

The Euler–Lagrange equation for this Peierls potential is

U(d2y/dx2) − P sin(y/y0) = 0 (50)

which can be integrated directly with

x =
∫ (

E0

U
− P

U
cos

(
y

y0

)]−1/2

dy (51)

whereE0 is the total energy of the configuration. The integral can be expressed in terms
of elliptical functions. For small values ofy/y0 the cos function can be expanded so that
the trajectory is determined by

x =
∫ [(

E

U
− P

U

)
+ Py2

2Uy2
0

]−1/2

dy. (52)

We now distinguish between two cases depending on the magnitude of the Peierls
contribution compared with the wall energy.
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(a) For small Peierls forces (E0 � P ), the wall profile becomes approximately
exponential with a characteristic length of(2U/P )1/2 near the shaft of the needle while
the profile at the tip of the needle is linear. The inverse function of the trajectory is

x = x0 + (2U/P )1/2 ln{y + y2 + 2(E/P − 1))1/2}. (53)

This trajectory is plotted in figure 9.

Figure 9. Periodic Peierls force with strong anisotropy energy.

(b) For strong Peierls forcesE0 = P the trajectory is parabolic with the centre of the
parabola at the shaft of the needle to ensure an optimal fit between the planar part of the
twin wall and the needle tip. The trajectory is shown in figure 10.

Figure 10. Needle domain with strong Peierls forces and high anisotropy energy.

Other forms of the Peierls potential can be envisaged. Their general effect is that any
reduction in Peierls forces with increasing bending of the needle (i.e. with increasing values
of y) will lead to blunter needle tips with stronger curvature of the wall trajectory near
the tip of the needle. At the shaft of the needle the trajectory of the needle tip will merge
with the unperturbed wall asymptotically. For strong linear Peierls forces the trajectory is
parabolic at the shaft.
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3.3. Mixing of length scales for the elastic anisotropy energy and the bending energy

Characteristic length scales have resulted so far from the simultaneous occurrence of Peierls
energies and either the elastic anisotropy energy or the bending energy. In each case, the
length scale was determined by the ratio of the energy coefficients with the power 1/2 or 1/4.
A similar length scale appears when the two anisotropy energies and the bending energies
apply simultaneously together with the Peierls energy. The energy density is

E = Py2 + U(dy/dx)2 + S(d2y/dx2)2. (54)

The Euler–Lagrange equation for this case is

−Py + U d2y/dx2 − S d4y/dx4 = 0. (55)

Fourier transformation leads to the equivalent equation for each Fourier componentyk:

Pyk + Uk2yk + Sk4yk = 0 (56)

with

k2 = −U/(2S) + −{(U/2S)2 − P/S}1/2. (57)

For sufficiently small values ofP , solutions are found with purely imaginary values ofk.
They represent an exponential decay of the trajectory for each Fourier component with the
characteristick vector given by

k2 = −P (58a)

and

k2 = −U/S + P < 0. (58b)

The length scales are given byP −1/2 and(U/S − P)−1/2, respectively.

3.4. ‘Right-angle’ twin walls

As shown above in section 2.1 the compatibility relation has always two solutions with
walls which have orthogonal normal vectors with respect to the coordinate system of the
paraelastic phase. In some cases these walls may beW andW ′ walls which can intersect
and form corners. It is customary to call these corner configurations ‘right-angled’ domains.
This term is somewhat misleading, however, because the angle between the two walls is
not exactlyπ/2 but eitherπ/2 + ω or π/2 − ω, whereω is the value of the spontaneous
strain of the sample [1]. In materials with a small spontaneous strain (some 10−3, say) the
deviation of the angle fromπ/2 is too small to be seen in electron microscopy or optical
images while for most ferroelastics with spontaneous strains of some 2% such deviations are
clearly recognized. It was shown that this misfit of the wall angle fromπ/2 is essential for
the understanding of the shape of the corner tip. Elastic strain energies of the bulk may lead
to a rounding of the corner or may make the corner bulge out. Using our present approach
we also predict rounded corners for a different reason. In order to derive the trajectory we
define a coordinate system which is rotated by−π/4 and ignore the deviation of the corner
angle fromπ/2. The configuration is shown in figure 11. The straight part of the wall is
at an angleα = −π/4 andα = +π/4 (i.e. dy/dx = 1 and−1, respectively). The role of
the Peierls forces is taken into account by the boundary condition that the walls at large
values ofx have to be asymptotically close to the original straight wall. The wall energy is
formulated as the sum of the anisotropy energy and the bending energy. In the case of the
anisotropy energy, the effect of contracting the length element dl in the bend of the wall
has to be considered. A similar argument is not necessarily valid for the bending energy
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because the bending may thicken the wall in the bend and thereby increase the bending
force. Using the projection of the length element on the axis we find the energy expression
which has to be minimized:

δE = δ

∫ {
4

π
U sin2

(
2α + π

2

) [(π

4

)2
+ α2

]1/2

+ Sα′2
}

dx = 0. (59)

The Euler–Lagrange equation is

2S/Uα′′ = (δ/δα){(4/π) sin[2(2α + π/2)][(π/4)2 + α2]1/2} (60)

with the boundary conditionsα = −π/4 for x = −∞ and α = π/4 for x = ∞. The
solution near the corner can be found for small values ofα in a series expansion inα:

2S/Uα′′ = −Aα + Bα2 . . . with A, B > 0. (61)

In fact, numerical comparison between the full equation and this series expansion shows
that for allα-values between−π/4 andπ/4 the approximation is excellent. Deviations are
large outside this interval but the boundary conditions disallow suchα-values anyway. The
solution for the wall trajectory is then, to a good approximation,

α = (π/4) tanh(x/λ) (62)

whereλ ∝ (S/U)1/2 is a measure for the bending radius of the wall around the corner.
Note that for mesoscopic structures with a multitude of right-angled walls, such as in tartan
patterns,λ introduces again a length scale which is of the same order of magnitude as the
length scale of the wall bending near defects or in needle domains if such bending is also
determined by the same anisotropy energy and the bending energy. The wall trajectory in
figure 11 is obtained in the (x, y) coordinate system by integration:

y = λ ln[cosh(x/λ)]. (63)

This shows the rounding of the corner.

Figure 11. Bending of a domain wall at a right-angled corner.

4. Dynamical excitations and coarsening rates

The dynamical response of a ferroelastic or co-elastic material which incorporates
mesoscopic twin structures may be, in a first approximation, decoupled into the bulk
phonon branches, the vibrations of the domain walls and localized waves near the domain
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walls. Furthermore, the domain walls can change their shape, usually while coarsening the
mesoscopic structure.

Localized excitations have properties similar to those of surface waves. In experimental
terms they may broaden the phonon line profiles of the twin-free material in a characteristic
way. In order to derive some of their important properties we consider first the elastic
excitations of the acoustic phonon branch with

d2u/dt2 − c21u = 0 (64)

and seek solutions which are constrained to the twin wall. Their amplitude may decay
exponentially in the bulk of the material. With theansatz

uy = uy0 exp[i(kx − ωt)] exp(−y/λ) (65)

we find a solution forλ with

(1/λ)2 = k2 − ω2/c2 (66)

which has real values only ifk2 > ω2/c2. The k vectors of these excitations are larger
than those of the equivalent bulk excitations. Waves with smaller wavevectors show no
confinement nor do elastic waves. Nesting of the acoustic phonon branch, on the other
hand, leads to strong localization of twin walleaves.

Mode confinement is essentially related to the fact that the twin wall is a rather softer
object than the surrounding bulk material. Beyond the usual surface-type excitations,
additional waves exist which are related to the relaxation of the wall itself. Their amplitude
function uy has to fulfil the conditions for displacements perpendicular to the wall:

σxx = C12uyy (67)

σyy = C11uyy (68)

σxy = 2C66uxy. (69)

The dynamical elastic response can then be written as

ρ δ2uy/δt
2 = C11 δ2uy/δy

2 + 2C66 δ2uy/δx
2 (70)

or

−ρω2 = C11(1/λ)2 − 2C66k
2. (71)

The lateral movement of the wall is determined for small amplitudes by the Peierls forces

δuy/δy = −Puy = −(1/λ)uy (72)

which determines the length scaleλ. Here we consider wall sections which are small
compared with the wavelength of the vibration. For small Peierls forces the length scale of
the relaxation can be larger than the actual thicknessw of the domain wall. The dispersion
of the mode is then, for largek vectors parallel to the wall,

(ω/k)2 = 2C66/ρ − C11/λ
2ρk2 k � 0. (73)

This estimate has significant consequences for the observation of phonon dispersions in
heavily twinned material. We anticipate that the wall-related excitations shift the acoustic
phonon branches towards lower energies, leading to an asymmetric line broadening of the
equivalent phonon spectra in neutron scattering experiments.

A similar effect is also expected for the high-frequency optical phonon branches to occur.
High-frequency phonons (so-called hard modes) are often used for the characterization of
structural phase transitions and show typically shifts of some 2% of their phonon frequencies
due to the phase transition [43–46]. These phonon branches have small Ornstein–Zernicke
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lengths, i.e. they detect the structural state on a length scale of some interatomic distances.
The actual wall thickness may well exceed the Ornstein–Zernicke length so that hard modes
see the strain profiles of the wall. Their profiles are then the simple superposition of the
local phonon modes. Consider now the usual case that high-frequency phonons harden in
the ferroelastic phase. The wall contains structural states with order parameters which are
lower than those in the bulk. The wall related phonon signals show then lower energies
than the bulk phonons which lead to low-frequency tails of spectral profiles in an infrared
absorption or Raman scattering experiment. Note that, in highly twinned material, about
10% of the material is typically in wall-related regions of the crystal which leads to a
similar asymmetry of the phonon dispersion, i.e. such effects should be easily observable
in ferroelastic crystals.

The dispersion relation for the vibrating wall itself is mainly determined for small Peierls
forces by the anisotropy energy. Large Peierls forces will prevent large-amplitude vibrations
altogether. For a weakly pinned wall the equation of motion is

δ2uy/δy
2 = (ρ/U)(δ2uy/δt

2) (74)

which is an elastic wave with the velocity(U/ρ)1/2. The dispersion relation is linear as
in case of elastic bulk waves but with drastically reduced wave velocities. The dynamical
structure factor decays ask−2 as in case of Huang scattering.

If the bending energy dominates in elastically more isotropic materials, the dispersion
relation changes dramatically. The equation of motion is now

δ2uy/δy
2 = (ρ/S)(δ4uy/δt

4) (75)

with a parabolic dispersion

ω = S/ρK2. (76)

The correlation function is that derived by Fourier transformation and has the functional
form of the Ornstein–Zernicke type

〈uy(x)uy(x
′)〉 ∝ (1/|x − x ′|) exp[−(x − x ′)/λ] (77)

whereλ = (S/ρ)1/2 is here the Ornstein–Zernicke length along the twin wall. The structure
factor for the vibrating wall decays ask−4, i.e. with the fourth power rather than quadratically
as in the case of Huang scattering.

If Peierls forces become important, the dynamical response is overdamped. In the
friction limit the relaxation for large anisotropy energies is

δuy/δt = (U/ρc)(δ2uy/δx
2) − (P/ρc)uy. (78)

The solution can be found with theansatz

uy = exp

(
−P t

ρc

) ∑
k

ck sin(kx) exp

(
−Uk2t

ρc

)
. (79)

The relaxation timeτ is given by the exponential term as

τ = ρc/(P + Uk2) (80)

and decreases with increasing wavevector. Thek dependence of the relaxation amplitude
consists of two contributions, namely a time-independent term and a time-dependent
Gaussian function. Their product shows a maximum for

k tan(kz) = xρc/eUt. (81)

This maximum decreases with time and becomes for small wavevectors

k = (ρc/2Ut)1/2. (82)
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The characteristic length of the wall movement in the friction limit increases, therefore, and
the microstructure coarsens with the rate law

λ = λ0t
−α with α = 1/2. (83)

A similar argument for a system with large bending energies leads to a rate exponent

α = 1/4. (84)

5. Conclusion

It is predicted that the trajectories of twin walls close to junctions of needle domains and,
similarly, in other geometrical configurations vary substantially as a function of materials
parameters. Domain walls in such regions can be planar or curved in a characteristic manner.

From the careful analysis of wall trajectories it should be possible to deduce the essential
energies which determine the geometrical structure of twin walls. Experimental observations
are now needed in order to verify or falsify these predictions.
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